Hybrid Batch Bayesian Optimization

نویسندگان

  • Javad Azimi
  • Ali Jalali
  • Xiaoli Z. Fern
چکیده

Bayesian Optimization (BO) aims at optimizing an unknown function that is costly to evaluate. We focus on applications where concurrent function evaluations are possible. In such cases, BO could choose to either sequentially evaluate the function (sequential mode) or evaluate the function at a batch of multiple inputs at once (batch mode). The sequential mode generally leads to better optimization performance as each function evaluation is selected with more information, whereas the batch mode is more time efficient (smaller number of iterations). Our goal is to combine the strength of both settings. We systematically analyze BO using a Gaussian Process as the posterior estimator and provide a hybrid algorithm that dynamically switches between sequential and batch with variable batch sizes. We theoretically justify our algorithm and present experimental results on eight benchmark BO problems. The results show that our method achieves substantial speedup (up to 78%) compared to sequential, without suffering any significant performance loss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Parallel Knowledge Gradient Method for Batch Bayesian Optimization

In many applications of black-box optimization, one can evaluate multiple points simultaneously, e.g. when evaluating the performances of several different neural network architectures in a parallel computing environment. In this paper, we develop a novel batch Bayesian optimization algorithm — the parallel knowledge gradient method. By construction, this method provides the one-step Bayes opti...

متن کامل

Budgeted Batch Bayesian Optimization With Unknown Batch Sizes

Parameter settings profoundly impact the performance of machine learning algorithms and laboratory experiments. The classical grid search or trial-error methods are exponentially expensive in large parameter spaces, and Bayesian optimization (BO) offers an elegant alternative for global optimization of black box functions. In situations where the black box function can be evaluated at multiple ...

متن کامل

Distributed Batch Gaussian Process Optimization

This paper presents a novel distributed batch Gaussian process upper confidence bound (DB-GP-UCB) algorithm for performing batch Bayesian optimization (BO) of highly complex, costly-to-evaluate black-box objective functions. In contrast to existing batch BO algorithms, DBGP-UCB can jointly optimize a batch of inputs (as opposed to selecting the inputs of a batch one at a time) while still prese...

متن کامل

Parallel Predictive Entropy Search for Batch Global Optimization of Expensive Objective Functions

We develop parallel predictive entropy search (PPES), a novel algorithm for Bayesian optimization of expensive black-box objective functions. At each iteration, PPES aims to select a batch of points which will maximize the information gain about the global maximizer of the objective. Well known strategies exist for suggesting a single evaluation point based on previous observations, while far f...

متن کامل

Dynamic On-line Re-optimization Control of A Batch MMA Polymerization Reactor Using Hybrid Neural Network Models

A hybrid neural network model based on-line re-optimization control strategy is developed for a batch polymerization reactor. To address the difficulties in batch polymerization reactor modeling, the hybrid neural network model contains a simplified mechanistic model covering material balance assuming perfect temperature control, and recurrent neural networks modeling the residuals of the simpl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1202.5597  شماره 

صفحات  -

تاریخ انتشار 2012